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(Received 23 August 1993 and in revised form 28 May 1994) 

Instead of considering just the vertically averaged current and the vertically averaged 
concentration, a multi-mode model is derived in which more of the vertical structure 
can be computed directly rather than being lumped into a dispersion coefficient. Test 
cases, of laminar flows, are used to quantify the accuracy of the lowest non-trivial 
truncation (two modes) in replicating both the flow and the dispersion process. 

1. Introduction 
After vertical mixing has occurred, solutes are carried along with the vertically 

averaged flow but the horizontal dispersion depends upon the square of the shear 
(Taylor 1953). Many different physical effects can contribute to the shear and hence to 
the horizontal dispersion : bottom drag (Elder 1959), flow curvature (Fischer 1969), 
buoyancy (Prych 1970), Coriolis effect (Smith 1977) and wind (Fischer 1978). Thus, for 
(time-dependent) shallow water flows an all encompassing horizontal shear dispersion 
tensor would involve (time-integral) quadratic combinations of all these physical 
processes. This paper explores an alternative approach in which some vertical structure 
of the concentration is calculated and the use of dispersion coefficients is avoided. 

Heaps (1972) pioneered the use of spectral (or multi-mode) methods to model the 
vertical structure of tidal currents and surges in shallow waters. Davies (1987) gives an 
expository review of subsequent developments. The idea is that the classical shallow 
water equation for the vertical averaged current is simply the lowest-order truncation 
in a complete spectral (or multi-mode) representation of the current. The inclusion of 
more, or a better choice of, modes improves the accuracy and the vertical resolution. 
The momentum equations and boundary conditions can be used to define natural, 
efficient and rapidly convergent selections for the modes. Here this approach is 
extended to encompass the concentration. The different equation and boundary 
condition for the concentration requires a different set of modes. 

The long-term purpose of the present work is to facilitate computationally simple 
(e.g. two modes) yet acceptably accurate calculations of solute dispersion in real 
shallow water flows. To quantify the accuracy of using just two modes, detailed 
comparisons are made for exactly solvable flows. To facilitate general applicability, the 
derivation includes allowance for time-dependent non-uniform water depth, solute 
discharges with significant discharges of water and momentum, plus all the physical 
effects mentioned in the first paragraph of this introduction. 
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2. Sigma coordinates 
In shallow waters any vertical velocity w arises principally as a result of changes in 

depth. An efficient way of accommodating such vertical motion is to use a boundary- 
following coordinate (Phillips 1957) : 

g=- with H = h+<. 
H ’  

(2.1 a, b) 

Here z is the vertical coordinate, the bed is at z = - h(x, y ) ,  the free surface is at z = 
[ (x ,  y ,  t )  and H(x,  y ,  t )  is the total water depth. The use of the Greek letter u is 
conventional and the description ‘sigma coordinates’ is commonly used. To allow 
some minor generalizations, this section gives an outline derivation of the mass, 
momentum and concentration equations in sigma coordinates. 

In terms of the horizontal velocity components u(x, y ,  B, t )  and u(x, y ,  cr, t),  the 
vertical velocities at the bed and at the free surface are: 

ah ah ac ac ac 
ax ay a t  ax ay 

w=-u--u-- at g = 0 ,  w=-+u-+u- at u =  1. (2.2a,b) 

Another source of vertical motion would be the presence of a source of water being 
discharged at the rate Q(x,y,cr’, t)  into the water column at the fractional height d 
above the bed. (Q measures the volume of new water into a unit volume in a unit of 
time). To accommodate these simple features we replace the conventional vertical 
velocity u’ by the quantity W :  

(2.3) 

In the Boussinesq approximation (in which changes of inertial density are very small 
but changes in weight may be dynamically significant) the mass conservation equation 
can be written 

Thus, the change of dependent variable (2.3) has the effect of replacing the local water 
source strength Q by a vertically averaged source strength. The kinematic boundary 
conditions for no water flow across the bed CT = 0 and the free surface = 1 are 

W = O  on a=0,1. (2.5) 

An immediate sequel to (2.4), (2.5) is that the time evolution of the free surface 
elevation c(x,  y ,  t )  is governed by the vertically integrated mass conservation equation 

Also, we can solve (2.4) to give W in terms of the horizontal velocity components 
u, u :  

HW = ax (H[ (+ 1; u d d  - (1 -a) 1 u dd]) +$ (H[ ./: u d d  - (1 - CT) fi u dd]) . 
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This important result (2.7) makes it possible to take full account of the effects of the 
vertical velocity within a calculation scheme that only involves the horizontal velocities 
u,v. By contrast, the classical shallow water approximation (Lamb 1945, Chap. 8) 
corresponds to setting W equal to zero. 

In the vertical direction the pressure p(x ,  y ,  a, t )  is modelled as being hydrostatic (i.e. 
vertical accelerations are small relative to gravity) 

p = P+gH p da' J: 
Thus, the water pressure p at a level a balances the atmospheric pressure P(x,  y ,  t )  and 
the weight of a column of water with density p(x, y ,  a, t). The corresponding horizontal 
momentum equations, with allowance for horizontal momentum sources M,, M ,  are 

a a a a 
- ( Hu) + - (Hu2) + - (Hvu) + H - ( WU) - Hfv = H(Ml - Qu) - H 
at ax aY aa 

a a 
- (Hv)  + - (Huv) + 
at ax 

Herefis the Coriolis frequency (associated with the rotation of the Earth) and v is the 
eddy viscosity. Additional horizontal viscosity terms (Blumberg & Mellor 1987, 
equations 37, 38) have been neglected on the premise that the square of the ratio 
between the water depth and horizontal lengthscales is very small. At the bed a no-slip 
boundary condition is used : 

u = v = O  on a=O. (2.10) 

At the free surface allowance is made for wind stress with components 7',7,: 

p V  au pv av 
-- - - 7,, - -=72 on u =  1. 
H a a  H aa 

(2.11a,b) 

In the Boussinesq approximation the density is only a small perturbation Ap from a 
reference water density po. Thus, we can replace any derivatives of p by derivatives of 
Ap and any un-differentiated occurrence of p by the constant po. 

Despite the inclusion both of depth topography h(x, y )  and of a moving free surface 
C(x, y, t )  the above equations (2.9 a, b) look very similar to the widely studied flat-bed, 
rigid-lid case. Thus (2.9a, b) provide a good starting point either for full three- 
dimensional numerical computations (Phillips 1957; Blumberg & Mellor 1987) or for 
reductions to systems of two-dimensional equations (Heaps 1972; Davies 1987). 

For a solute with concentration c(x, y ,  a, t )  and source strength q(x, y ,  a, t )  the 
advection-diffusion equation takes the form 

a a a a 
at ax aY aa 
- (Hc)+-((Huc)+-(Hvc)+H-(WC) 

I a ( a,) 
a ( a,) a ( a,) Haa a n  ax ax ay ay 

=H(q-Qc)+-- K- +- HK- +- HK- , (2.12~) 
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with 
ac 
aa 

K - = O  on a = 0 , 1 .  (2.12b) 

Here K is the vertical eddy diffusivity and K the horizontal eddy diffusivity. A 
turbulence k - e  model for Y, K, K would involve additional transport equations 
(Hutton, Smith & Hickmott 1987) which could likewise be solved by appropriate 
multi-mode expansions. 

3. Velocity modes 
If we are to be efficient in our use of a representation of the vertical structure of the 

flow, then as far as possible we should build in the mathematical features of the 
momentum equations (2.9a, b) and the boundary conditions (2. lo), (2.11). Otherwise, 
computational effort would be wasted in imposing such features as zero flow at the bed. 
Following Heaps (1972), we give particular emphasis to the eddy viscosity v and its 
approximately universal variation with fractional height above the bed (i.e. constant 
for laminar flows and parabolic for turbulent flows). If ;(a) is a dimensionless shape 
function characterizing the idealized eddy viscosity profile in shallow water flows, 
then we define the velocity modes @(m)(a) and associated eigenvalues ,dm): 

(3.1 a) 

with = O  on a = 1 ,  (3.1 b, c) 
~ d@(m) @ c m ) = O  on a=O, v--- 

d a  

For the velocity components u, v, W we pose the representations 
00 00 

u = c u y x , y ,  t)  @(m)(a),  v = c u(")(x,y, t) @(m)(g) ,  (3.2a, b) 
m-0 m=o 

(3.2~) 

It is the rate of convergence of these series that determines the usefulness of the multi- 
mode representation (Davies 1987). The vertically integrated mass conservation 
equation (2.6) now becomes 

To derive evolution equations for the velocity amplitude factors dm),  dm)  we 
and multiply the (Boussinesq approximation) momentum equations (2.9 a, b) by 

integrate with respect to a: 
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(3.44 

(3.4b) 

Coupling between the modes in equations (3.44 b) arises from the nonlinear 
advective terms (horizontal and vertical), the density perturbation and the viscosity. 
Davies (1987) points out that the coupling would be even more complicated and the 
convergence much slower if the selection (3.1 a-g) of the modes did not build in suitable 
boundary conditions and orthogonality. Conversely, if the vertical shape of the 
velocity profile were known exactly (Falconer 1976) then convergence could be 
obtained in a single step. 

If the eddy viscosity profile v is nearly proportional to the idealized dimensionless 
eddy viscosity profile f: 

then the viscosity terms in (3.44 b) become approximately diagonal 
4x9 Y ,  a, t )  - N X ,  Y ,  0 fl(4, (3.54 

(3.5b) 

For weak nonlinearity, it is the growth of ,dm) with m that determines the rate of 
convergence of the velocity series (3.2a, b). 

The greatest disparity between the eigenvalues occurs between rn = 0 and m = 1. So, 
good predictions of the bulk flow can be expected with just the m = 0 velocity mode. 
For example, the classical shallow water (vertically integrated) approximation can be 

N 
and --IF-- N 

H2P(rn'. 
- U ( m ) -  ( m )  

HZP 

recovered if we put 
(3.6a, b) 

(Lamb 1945, Chap. 8). To get any representation of the shear flow (and dispersion) 
perpendicular to the bulk flow, it is essential that we also include the m = 1 mode. 
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4. Concentration modes 
For the solute concentration c(x, y ,  a, t )  the different boundary conditions (2.12b) 

require a different family of modes. If k(a) is a dimensionless shape function 
characterizing the idealized eddy diffusivity profile in shallow water flows, then we 
define the concentration modes Pm)(a) and associated eigenvalues : 

(4.1 a) 

(4.1 b) 
d !Pm) 

d a  
with k-=O on a = O , l ,  

1; Pm)a d a  = 1, 1: !Pm)Fn) d a  = 0 for m + n, (4.1 c, d )  

The zero mode !Po) is constant (unity) with zero eigenvalue. 
In terms of these modes we represent the concentrations as 

m 

c = c c y x , y ,  t )  !Pya). 
m=O 

The !Pm) component of (2 .12~)  is an evolution equation for d m ) :  

If the eddy diffusivity is nearly proportional to 2: 

then the K-terms in (4.3) become approximately diagonal 

There is a close similarity between the multi-mode equations (4.3) and the equations 
for dispersion in a flow with several well-mixed layers (Chickwendu 1986). A 
truncation involving just the zero mode do) has only a single speed and totally neglects 
the shear dispersion. Hence it is essential to include the rn = 1 mode. The remainder of 
this paper uses exact results for laminar flows to test the effectiveness of using only the 
two modes rn = 0 and m = 1. For simplicity the density perturbation Ap will be 
modelled as being proportional to the solute concentration 

Ap = acpo (4.6) 
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5. Trigonometric modes 
For constant values of the reference eddy diffusivity and eddy viscosity profiles, 

/ C = v = l ,  (5.1) 
" A  

the concentration and velocity modes are trigonometric : 

!Po) = 1 ,  Fm) = d 2  cos mxcr, = rn2x2, (5 .2~-c)  

@ ( m )  = 1/2 sin ((m + $) xu), ,dm) = ( m  +.i> 1 2  x 2 , (5.3 a, b) 

{a- 1 +cos ((m+$)x(T)}.  W ( m )  = d 2  
(m+$)x  

(5.3 c)  

For the vertically integrated mass conservation equation (3.3) we require the 
coefficients 

(5.4) 

In a truncation involving just the m = 0 and m = 1 velocity mode we have 

where H = h + c .  

(5.5a) 

(5.5 b) 

Thus, most of the horizontal mass flux is associated with the monotonic m = 0 velocity 
mode. (In subsequent equations the coefficients have more complex expressions so a 
decimal form has been used to make explicit the size and sign of the coefficients.) 

For the horizontal momentum equations (3.4a, b) we require the coefficients 

@ y l )  = (- 1)"2/2, ( 5 . 6 ~ )  

1 
@ ( j ) @ ( k ) @ ( m )  da - l +  

-j+k+m+$ j - k + m + i  

] (5.6b) 
1 

+ j +  k - rn +;-j+ k + m + g ' 

(5.6e) 

for j +  0. (5.6g) 
(- l)m+j 41" + - 2(m + $) - 

x [ ( m + ~ ) 2 - j ~ ]  [(m+;)2-52]2x2 
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In ( 5 . 6 ~ )  the term involving (k  $. m) is zero when k = m. In a truncation involving just 
two velocity modes and two concentration modes we have 

a 
- (Hu‘O)) + 1.2004 
at 

-Hu(’) 

-0.327agH2 -+ 0.2702agH2 -+ 1.145~tgH-~(” + 1.4141 

Q (COS XCT-COS 2 ~ a )  da-0.9003H 

ac(o) aH 7 

ax ax ax Po 

~ ( l  + C O S  xa) 

1: 

V(COS ~ ~ + C O S  2 ~ ~ 7 )  da,  ( 5 . 7 ~ )  

a 
- (HdO)) + 1.2004 
at 

-HU(’)~: Q(cos xo-cos 2xa) da-0.9003H 

ac(o) aC(1)  i3H 7 -0.327agH2-+ 0.2702agH2-+ 1. 145~gH-c(” + 1.4142 
S ax aY Po 

V( 1 + cos 7 ~ )  d a  - 7.402 V(COS TCCT + cos 2na) da, (5.7b) 
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a a - (Hu(l)) - 0.24008 (HdO)') + - (Hd0)u(O)) 
at aY 

a 
( H d o ) d 1 ) )  +- ( H d 0 ) ~ ( ' )  + HII( ' )U(~))  

aY 

-0.0128 

ac(o) ac(1) aH r 
1.023agH-c'"- 1.414' - 0.23 64agH2 __ + 0.1 62 1 agH2 ~ - 

ax ax ax Po 

V(COS TCCT+COS 2 7 ~ ~ )  ~ ( 1  + C O S  3 7 ~ )  d g ,  ( 5 . 7 ~ )  

a - (H~(~) ) -0 .24008  
at 

I a 
aY 

(Hd0)d1) + Hd1)d0)) + 2 - (Hd0)d1))  

T C ~ - C O S  2nu) da 

- Hv(') 1: Q(1 -cos 3nu) du-0.3001H 

aC(0) aC(1) aH 7 

aY aY aY Po 
1.023agH- c(l) - 1.4142 - 0 .2364agH2 - + 0.162 1 agH2 - - 

V(COS + cos 2 7 ~ )  d u  - 22.2 V (  1 + cos 3 n ~ )  d u .  (5.7 d )  
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Much of the superficial complexity of (5.7 a-d) stems from the allowance for vertical 
velocities. The many different numerical coefficients are merely consequences of the 
different vertical profiles of the corresponding terms in the original three-dimensional 
momentum equations (2.9a, b). It is only those terms which have exactly the velocity 
mode structure that have the coefficient unity. For example, the atmospheric 
horizontal pressure gradient (aP/ax, aP/ay) is independent of u, so does not have the 
requisite @(m) structure and has non-integer coefficients. The viscosity integrals become 
trivial if v conforms with the reference profile (5.1) and does not vary with fractional 
height u above the bed. Otherwise, the viscosity integrands tend to be weighted 
towards the bed where viscous terms are more important. It is the rapid increase with 
m of the viscous coefficients that makes the velocity amplitudes do), dl), . . . , decrease 
sufficiently rapidly for a truncated model to be useful. 

For the horizontal concentration advection-mixing equations we require the further 
coefficients 

for k = m = O  @(n y&) p m )  ds = 2 d 2  
n(2j+ 1) 

for k = 0 , m  + 0 - 2j+ 1 

- - 2j+1 for m = ~ , k + ~  

- 
x[( j+$)2-m2]  

n[( j + i)2 - k2] 

1 1 1 + j + i + k - m  

] for k + O , m + ~ ,  
+ j + f - k + m  

d u =  0 for m = 0 ,  
d Frn) 

du  
1; w ( j )  Y/ 'W 

m ] for k = O , m + O  
1 

( 5 . 8 ~ )  

(5.8b) 

( 5 . 8 ~ )  

(5.8d) 

(5.8e) 

(5.8f) 

1 - - 2 2(k =I= m) - 

+j+ i + k- m j +  i- k + m j + + -  k - rn 
(5.8g) 

In (5.8g) the term involving (k  + m) is absent when k = m. The truncated equations 
involving just two velocity modes and two concentration modes are 

k - m  j + i + k + m  

- l +  ] for k + O , m + O .  
1 
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1 

= H I  (q-QdO)) du- 1.414Hd') 
0 

+A(./: ax 
K d u g ) +  1,4I4$(H/:Kcos du- ax 

24 1 

(5.94 

I 
I 

a 
- (Hd') )  - 0.4244 
at 

(5.9b) 

In shallow waters the square of the ratio between the water depth and horizontal 
lengthscales is very small. Hence, it is justifiable to neglect the K-integrals on the right- 
hand side of (5.9b) by comparison with the K-integral term. For the momentum 
equations (2.9a, b) such horizontal mixing terms were neglect a priori. However, in 
(5 .9~)  the K-integral is absent and it is appropriate to retain the K-integrals. Indeed, for 
a short period immediately after discharge, horizontal diffusion dominates shear 
dispersion (Gill & Sankarasubramanian 1970). 

6. Plane Poiseuille and linear Couette flow 
The complexity of the mass, momentum and concentration equations ( 5 . 9 ,  (5.7), 

(5.9) is evidence that account is taken of numerous physical effects and their 
interactions (drag, changes in depth, buoyancy, Coriolis effect, wind stress, time 
dependence, vertical structure). Thus, there is a profusion of tests that we could make 
for each effect individually and in combinations. Davies (1987) reviews the extensive 
testing that has been done concerning velocity predictions. Accordingly, the main 
thrust of the present paper concerns the testing of concentration predictions. However, 
before we can calculate the dispersion we need to know the flow. 

As a first simple test of the two-mode truncation we consider a steady flow down a 
gentle slope in water of constant total depth and constant viscosity, with negligible 
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Rigid bed o = 0 

FIGURE I .  Velocity profiles for plane Poiseuille and linear Couette flows (-), with the two- 
mode approximations (-----). 

buoyancy or Coriolis effects. The steady-state solution of the full momentum equations 
(2.9a-d) and boundary conditions (2.10), (2.1 1) is plane Poiseuille flow 

H 2  ac 
u = -- g - ((T - fv”. 

ax 

The two-mode momentum equations (5.7 a, c) have the solutions 

(6.2a, b) 

Figure 1 compares the dimensionless velocity profiles (with an extra factor of 3 to bring 
the average value of the exact profile to 1): 

3((~-+a’) and %[sin 7r3 g)+& sin (;“)I. (6.3 a, b) 

The two-mode trigonometric representation for the velocity profile is accurate to 
within less than 1 YO of the average velocity. 

As a second simple test (of the same two-mode equations) we consider steady 
wind-driven flow in water of constant depth and constant viscosity, with negligible 
buoyancy or Coriolis effects. The steady-state exact velocity profile is linear Couette 
flow 

(T. (6.4) u=-  71H 

Po v 
The corresponding solutions of the two-mode equations are 

(6.5a, b) 

Figure 1 compares the dimensionless velocity profiles (with an extra factor of 2): 

2a and E[sin x2 
(;.)-;sin (;(T)] (6.6a, b) 

The accuracy is poor near the free surface. 
A discussion of velocity modelling for wind-driven flows is included in the review by 

Davies (1987). An extreme stance is to use the steady-state wind-driven velocity profile 
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to determine the modes (Koutitas & Koutita 1986). This guarantees perfect replication 
of exact results for the idealized cases. The testing should then be for non-idealized 
cases such as oscillatory flows. 

7. Tests of the concentration predictions 
The majority of exact results for shear dispersion use the method of moments (Aris 

1956) in which the single (but daunting) calculation of the concentration distribution 
is replaced by much simpler (but infinitely many) calculations of the moments: the 
amount of material, its centroid movement, the amount of spreading, skewness, 
spikiness, etc. Accordingly, this section compares exact results for the first few 
moments of the concentration distribution in plane Poiseuille and linear Couette flow 
with the first few moments of the two-mode model (see the Appendix). 

After vertical mixing has taken place, the concentration is carried along at the 
vertically averaged velocity iT. For plane Poiseuille flow (6.1) and for linear Couette 
flow (6.4) this velocity is related to the driving forces: 

(7.1 a, 6) 

In the two-mode model the asymptotic velocity of the do) mode, when d’) decays, is 
(see the Appendix): 

The results (6.2a, b) and (6.5a, b) allow us to relate this velocity to the driving forces 

and 

H 2 g  -0.3325-- 
ax’ 

- I-- 1 1- T H  - 0.4969 71H ~. ?( 27)p,v Po V 

(7.3a) 

(7.3 b) 

The differences between these two-mode approximations (7.3a, b) and the exact results 
(7.1 a, b) is less than 1 YO. 

Standard shear dispersion models (Taylor 1953) do not account for any centroid 
displacement associated with the initial vertical discharge profile. For a point release 
(with negligible volume or momentum but a significant quantity of contaminant) the 
initial speed of the contaminant matches the flow speed at the release height d. After 
vertical mixing has taken place there remains a centroid displacement comprising two 
terms (Aris 1956) 

where G is the centroid displacement function and v is the observation height. For the 
vertically averaged concentration F, the observation term G(g)  would be absent. For 
a uniform discharge the release term G ( d )  is absent. When the vertical diffusivity K is 
constant, the polynomial velocity profiles (6. l), (6.4) for plane Poiseuille and linear 
Couette flow lead to polynomial formulae for the corresponding centroid displacement 
functions G(o) : 

G ( d  + G ( 4 ,  (7.4) 
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Free surface 0 =1 

Rigid bed 0 = 0 

FIGURE 2.  Shapes of the centroid displacement functions (-) and the two-mode 
approximations (- - - -  -) for plane Poiseuille and linear Couette flows. 

For the two-mode model, equation (A 9) gives the trigonometric formula for the 
centroid displacement function 

The results (6.2a, b) and (6.5a, b) allow us to relate this displacement to the driving 
forces 

and 

[l --&I cos XfT, 

[I +;I cos XV. 

Hqga[ 64 
VK a x w  

71H3 32 

G(v) = --- 

G(v) = 
Po VK 3X5 

(7.74 

(7.7 b) 

Figure 2 compares the shapes of exact and approximate centroid displacement 
functions (7.5), (7.7). It deserves reiteration that standard shear dispersion models 
neglect centroid displacements. 

Bugliarello & Jackson (1964) give the longitudinal shear dispersion coefficient for 
plane Poiseuille flow 

( 7 . 8 ~ )  

Saffman (1962) gives the longitudinal shear dispersion coefficient for linear Couette 
flow 

7: H4 
= 0.008333- 

iPH2 D = -  
3 0 ~  P i  V2K ’ 

(7.8b) 

For the two-mode model, equation (A 12) gives the shear dispersion coefficient. 

For the two-mode versions of plane Poiseuille flow (6.2a, b) and of linear Couette flow 
(6.5 a, b) the corresponding shear dispersion coefficients are 

(7.10b) 
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Remarkably, the error in the dispersion coefficients (7.10~) for plane Poiseuille flow is 
only in the fifth significant figure. By contrast, the two-mode dispersion coefficients 
(7.10b) for linear Couette flow are nearly 4% in excess. (This would correspond to a 
2 YO underestimate in the peak concentration at large times.) 

Another feature which is omitted in standard shear dispersion models is the initial 
inefficiency of the shear process (Gill & Sankarasubramanian 1970). The long-term 
consequence is to give a reduced longitudinal variance. For a uniform discharge at 
t = 0 Chatwin (1970, appendix B) derived the neat result 

V(2) - 2(K+ D )  t - 2G2, (7.1 1) 

where G(v) is the centroid displacement function (as given in (7.5a, b)) and the overbar 
indicates a cross-sectional (vertical) average value. For plane Poiseuille flow and for 
linear Couette flow the deficit variance 2@' has the values 

and 

= 0.000423 3 (--) H4ga< 

= 0.001 686(-) r l H 3  . 

VK ax 

Po VK 
(7.12~1, b) 

The corresponding deficit variance, equation (A1 3), for the two-mode model is 

(7.13) 

For the two-mode versions of plane Poiseuille flow (6.2a, b) and of linear Couette flow 
(6.5a, b) the respective deficit variances are 

and 

= 0.0004289(--) H 4 g a <  
VK ax ' 

1 r1H3 r1H3 

($y(l+-) 5 (-) PoVK = 0.001749(-) . Po VK 

(7.14~) 

(7.14b) 

Again, linear Couette flow has the larger error of nearly 4%. 
The method of moments could be pursued further (Chatwin 1970). However, the 

above tests of the two-mode truncation serve to demonstrate that many features of the 
exact dispersion process are replicated with reasonable accuracy. In particular, the 
centroid displacement and deficit variance are features omitted in conventional 
dispersion models (Taylor 1953). 

8. Concluding remarks 
In a real flow different physical effects can dominate the flow and the dilution process 

in different places or at different times. Accordingly, the derivation given in this paper 
of the multi-mode (or two-mode) equations includes a profusion of physical effects and 
their interactions. Similarly, the testing of the accuracy of the two-mode truncation is 
for flows with different driving forces. 

By calculating some of the vertical structure of the flow and of the concentration, the 
computational task is more complicated than solving the shallow water equations for 
the flow and the shear dispersion equation for the concentration. However, features 
omitted in the shallow water and shear dispersion equations are represented (e.g. cross- 
flows and the effect of the vertical position of the discharge). 
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This work would not have been attempted without encouragement and advice from 
Jerzy Petera and Cecil Scott, who wrote and tested computer codes even before this 
derivation was finished. 

Appendix. Method of moments 

concentration is 

where (T is the fractional height above the bed. If the viscosity is constant, then the two- 
mode representation for the velocity in the x-direction is 

For water with constant vertical diffusivity K the two-mode representation for the 

c(x, y ,  (T, t )  = c y x ,  y ,  t) + c(’)(x,y, t )  2/2 cos nc,  (A 1) 

When the discharge is of negligible volume, momentum or buoyancy, in a uni- 
directional flow with constant depth H and constant horizontal diffusivity K, the two 
mode equations (5.9a, b) are 

Here the discharge strengths for the two modes are related to the vertical distribution 
of the discharge strength q(x, y ,  (T, t )  : 

qcO) = Jo q dcr, q(l) = q 2/2 cos xcr dc. 
1 

(A 44 b) 

Following Aris (1956), we define spatial moments relative to the natural velocity of 
the do) mode: 

In terms of the moments, the partial differential equations (A 3 4  b) are replaced by a 
sequence of ordinary differential equations : 

For simplicity, we shall restrict our attention to steady flows and to instantaneous 
discharges at time t = 0 and longitudinal position x = 0. 
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The zero moments have the solutions 

n2 
ct\(t) = q;\, cg\ = qg\ exp (-$rt) for t > 0. (A 7 4  b) 

Thus, the amount of material Hcf', in the flow remains constant while the vertical non- 
uniformity decays exponentially on the vertical mixing time and is proportional to the 
initial non-uniformity q(l) of the discharge. 

The first moments with respect to x have the solutions 

Non-zero values of the first moment imply that not all of the centroid movement is 
accounted for in the natural velocity of the do) mode. At large times after discharge the 
extra centroid displacement (as a function of u) is 

Aris (1956) pointed out that for a delta-function discharge at fractional height cr' there 
is the same functional form for the centroid displacement with respect to discharge 
height d and observational height CT. 

For do) the solution for the second moment with respect to x is 

+ 2Kt. (A 10) 
For a uniform discharge the variance VO) for the zero mode has the asymptote 

Thus, the horizontal diffusion K is augmented by a quadratic shear dispersion 
coefficient 

Also, there is a quadratic deficit variance 
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related to the initial inefficiency of the shear dispersion process (Gill & San- 
karasubramanian 1970; Chatwin 1970). 

The method of moments can be continued to higher moments (Chatwin 1970). 
However, the above results provide us with a reasonable number of tests to compare 
the exact and two-mode approximations for the natural velocity, centroid dis- 
placement, shear dispersion and deficit variance. 
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